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SUMMARY 


An analytical technique is presented for approximating unsteady aerody­
namic forces in the time domain. The order of elements of a matrix Pad6 approx­
imation is postulated, and the resulting polynomial coefficients are determined 
through a combination of least-squares estimates for the numerator coefficients 
and a constrained gradient search for denominator coefficients which insures 
stable approximating functions. The number of differential equations required 
to represent the aerodynamic forces to a given accuracy tends to be smaller than 
that employed in certain existing techniques where the denominator coefficients 
are chosen a priori. The resulting Pad6 approximation allows the aircraft equa­
tions of motion to be formulated in terms of linear ordinary differential equa­
tions, a form amenable to the application of optimal control theory methodology. 
The technique is applied to an aeroelastic, cantilevered, semispan wing whose 
motion is expressed in terms of five elastic modes. A good estimate is obtained 
to the generalized unsteady aerodynamic forces on the imaginary axis for ele­
ments of the matrix Pad6 approximation having fourth-order numerator and second-
order denominator polynomials. 

INTRODUCTION 


In the past two decades, control-system designers have seen a shift in the 
mathematical techniques employed for the analysis and synthesis of dynamic sys­
tems. The emphasis has shifted from the so-called "classical" or frequency 
domain methods developed prior to 1960 by investigators such as Nyquist and 
Bode, which have played an important role with respect to single input/single 
output systems, to the more "modern" state-space approach. This shift in empha­
sis can be attributed to the control designer not only requiring control but 
also needing or desiring to "optimize" the performance of the control system. 
A difficulty in using modern control theory for the design of systems to control 
aeroelastic behavior is the requirement of transforming the unsteady aerodynamic 
forces, normally provided in the frequency domain, into the time domain. Fur­
thermore, it is highly desirable to use a transformation that results in a 
dynamic system that is of "reduced order," since the cost of the design
increases rapidly with increases in the number of differential equations used 
to model the system. Several methods that have been presented in the literature 
to perform this transformation are outlined. 

A "Power Series Expansion Method" is presented by Weiss, Tseng, and Morino 
in reference 1 .  This method assumes that the unsteady aerodynamic forces can 
be represented by a power-series expansion in frequency. An advantage of this 
method is that if the unsteady aerodynamic forces can be represented with two 
or less terms, then no additional state equations are added to the set of equa­
tions used to represent the motion of the aircraft. However, as more terms are 
added in the expansion, higher order derivatives of the aircraft state variables 
are introduced. Since unsteady aerodynamic forces are characteristically pro­
portional to the delayed aircraft state, the use of these higher order terms to 



approximate the unsteady aerodynamic forces generally will not be as satisfac­

tory as a more appropriate approximation function for the same number of added 

state equations. 


Edwards has proposed, in reference 2, the use of a "Rational Model" to 
approximate the unsteady aerodynamic forces which add no additional state equa­
tions to the mathematical model. This method has been applied only to simple 
examples because of the lack of a production computer code for the generation 
of the aerodynamic forces in the Laplace domain. 

The method most commonly employed is referred to as the "Least-Squares 
Method." This method has been used for a number of different aerodynamic con­
figurations in references 3, 4, and 5. The method derives its name from the 
method used to solve a set of simultaneous equations for the coefficients of 
an assumed aerodynamic model. This assumed aerodynamic model consists of a 
rational polynomial in the frequency domain. In order to make the problem 
linear, the coefficients of the denominator polynomial are assumed known. A 
least-squares estimator is then employed to solve for the coefficients of the 
numerator polynomial. These coefficients minimize the mean-square error 
between the predicted aerodynamic forces and the aerodynamic force data being 
fit at a fixed set of frequencies. A disadvantage of this method, as it is 
applied, is the requirement of the user to have a priori knowledge of the denom­
inator polynomial in the assumed aerodynamic model. These parameters, which 
are usually arbitrarily chosen to be within the dynamic range of the natural 
frequencies of the aircraft, determine the best accuracy that can be achieved 
with a given model order. The order of the aerodynamic model is directly pro­
portional to the number of first-order constant coefficient differential equa­
tions generated by the algorithm. For the control-systems designer to increase 
the accuracy of the approximation, he must either spend a considerable amount 
of time and effort adjusting the parameters of the denominator polynomial or 

increase the system order and pay the cost of additional state equations in the 

design cycle. 


Another method that has received attention in the literature is the "Matrix 
Pad6 Method" as described in references 2, 6, and 7. This method has been 
applied to a number of simple problems in references 2 and 7. However, when 
this method is applied to problems of increasing difficulty where there are more 
than two modes and/or when the predicted aerodynamics are not precise, the 
resulting approximation function can be unstable. This characteristic of the 
"Matrix Pad6 Method" was observed in reference 6. In the present paper, a func­
tion is considered stable if a bounded input (i.e., wing motion) always produces 
a bounded output (i.e., distributed load on the airfoil). This must not be con­
fused with a stable aerodynamic approximation function which, when coupled with 
the dynamics of the structure, results in a closed-loop system that has a closed-
loop instability (i.e., flutter). 

The method described in the present paper is an extension of the "Matrix 

Pad6 Method" and the "Least-Squares Method." A constrained gradient method is 

used to find the denominator coefficients of the approximation while constrain­

ing the calculated approximation to be stable, and a linear least-squares method 

is used to solve for the numerator coefficients. By using the method described 

herein, the control designer need only adjust the order of the approximation 
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until a satisfactory compromise is reached between the good accuracy obtained 

when a large number of states are used and the high cost of performing modern 

control-theory design on large systems. 


A brief development of the equations of motion for an elastic airplane are 
presented. The technique of approximating the unsteady aerodynamic forces is 
then described. This technique is applied to an aeroelastic, cantilevered, 
semispan-wing flutter model. Results obtained are compared with those found 
using the "Least-Squares Method" in terms of both the fit of the oscillatory 
aerodynamic forces and the predicted behavior of critical system characteristic 
roots in the vicinity of flutter. The method developed in the present paper 
utilizes a lower order approximation for the aerodynamic forces than that 
employed in the "Least-Squares Method" of reference 3. The present method tends 
in general to require a lower order of approximation than the "Least-Squares 
Method" because of the inclusion of the denominator polynomials as additional 
variables in the fit of the oscillatory aerdynamic forces. This results in a 
smaller number of differential equations for the design model. 

SYMBOLS 


A matrix of coefficients used in solution of aerodynamic approximation

(see appendix) 


[Ail coefficient matrices of aerodynamic approximation of equation (21) 


Aij amplitude of generalized aerodynamic force Qij(t)


A(M,F2)
matrix of coefficients of first-order differential equations of 

complete system 


ai coefficients of numerator polynomial of a Pad6 approximation 


[B] matrix of coefficients (see matrix [cI 


Bj vector of constant coefficients used in solution of aerodynamic 

approximation (see appendix) 


ba 


[cl 


coefficients of denominator polynomial of a Pad6 approximation 


matrix of coefficients for system equations such that 
[Cl X(t) = [B] X(t) 

Cr wing root chord (see fig. 2) 


c/2 reference length 


[Dl generalized damping matrix 


[DmI coefficient matrices of aerodynamic approximation of equation (21) 
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e natural base 


F[x(t)] ,F'I [x(jw)] Fourier transform pair defined by equation ( 9 )  

identity matrix 


measure of the error between data and approximation 


function minimized by equation ( 2 0 )  

measure of the error between data and approximation of jth vibration 

mode 


= d-1 

order of numerator polynomial of a Pad6 approximation 


generalized stiffness matrix 


reduced frequency, w / 2 V  

specific reduced frequency 


free-stream Mach number 


generalized mass matrix 

generalized mass for ith vibration mode 


mass per unit area at point x,y 


order of unsteady aerodynamic Pad6 approximation and order of denomi­

nator polynomial in Pad6 approximation 


order of unsteady aerodynamic Pad6 approximation for ith vibration 

mode 


number of reduced frequencies used in cost function 


number of vibration modes 


matrix of coefficients of [P(jw)1 (see eq. (17)) 


jth column vector of [Pm] 


Pij(jkg) ith,jth element of [PI evaluated at frequency kg 


[P(jw)3 ,  [PI matrix of numerator polynomials of unsteady aerodynamic Pad6 
approximation 

&?(x,y,t) time varying total pressure distribution 
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t) time varying pressure distribution due to impulse of jth mode
Apj(xryf 


[Q(t)] matrix of functions such that ith,jth element is unit impulse 

response of ith generalized force due to an impulse of jth mode 


Qi (t) generalized aerodynamic force in time domain for ith mode 


Qij (t) ith,jth element of [Q(t)] 


[Q(jw) 1 Fourier transform of [Q(t)] 


[ G  (jw)1 unsteady aerodynamic Pad6 approximation 

Qij(jka) ith,jth element of [Q(jw)] evaluated at frequency kg 


[iij(jkt)] ith,jth element of [i(jw>1 evaluated at frequency kg, 


q(t) vector of generalized coordinate in time domain 


qi(t) ith generalized coordinate in time domain 


q(jm) Fourier transform of q(t) 


[RE] matrix of coefficients of R ( j w )  (see eq. ( 1 6 ) )  

[g(jw)] matrix [R(jw)] with leading coefficient equal to [I] 


Rj(jkfi) jth element of [R(jw)1 evaluated at frequency ka 


[ R (  j w )  ],[R] matrix of denominator polynomials of unsteady aerodynamic forces 
Pad6 approximation 

rfi ,j jth diagonal element of [Ra] 


S semispan length of wing in example 


T(jk) general Pad6 approximation 


t time 


V free-stream velocity 


xj solution vector used in calculation of aerodynamic approximation (see 

appendix) 


x (t) system state vector 


x(t) i state variable vector 


(X,Y) scalar product 


z(x,y,t) vertical displacement of body at point x,y 
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s i  viscous damping c o e f f i c i e n t  for i t h  mode 

P r e fe rence  d e n s i t y  of f l u i d  

+i nondimensional mode shape used to d e f i n e  gene ra l i zed  coord ina te  
q i  (t) 

+ i j  phase a n g l e  of Qi j(t) 

w frequency of o s c i l l a t i o n  

wni n a t u r a l  frequency of v i b r a t i o n  of i t h  mode 

I I  I I  norm, d r 7  
D o t s  over symbols denote d e r i v a t i v e s  wi th  respect to t i m e .  

EQUATIONS OF MOTION FOR AEXOELASTIC MODEL 

The equat ions of motion f o r  an elastic a i r p l a n e  i n  s t r a i g h t  and l e v e l  
f l i g h t  can be formulated by us ing  Lagrange's equa t ions  of motion wi th  or thogonal  
modes. By t h e  method of s e p a r a t i n g  v a r i a b l e s ,  t h e  motion on t h e  wing is assumed 
to be t h e  product of a p o s i t i o n  f u n c t i o n  and a t i m e  func t ion .  I t  is also 
assumed t h a t  t h e  product  of these  f u n c t i o n s  can be r ep resen ted  with s u f f i c i e n t  
accuracy by a f i n i t e  series so t h a t  t h e  v e r t i c a l  displacement a t  t h e  p o i n t  x,y 
becomes 

where + i (x ,y )  are the  nondimensional mode shapes used to r e p r e s e n t  t h e  system, 
n is t h e  number of modes included, and q i ( t )  r e p r e s e n t s  t h e  gene ra l i zed  
coord ina te  with dimension of l eng th ,  t h e  particular u n i t  depending upon t h e  
system of u n i t s  being used. If a l l  of t h e  s t r u c t u r a l  damping p r e s e n t  i n  t h e  
aircraft  is assumed to be viscous i n  na tu re ,  t hen  t h e  equa t ions  of motion can 
be w r i t t e n  as  

where Wni is t h e  n a t u r a l  frequency of v i b r a t i o n  of t h e  i t h  mode, 5 i  is t h e  

v i scous  damping c o e f f i c i e n t  for the  i t h  mode, and M i  is t h e  gene ra l i zed  mass 
of t h e  i t h  mode defined by 
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i n  which m(x,y) is the  mass d e n s i t y  of t h e  body a t  t h e  p o i n t  x,y and 
o n3) [ 1 dx dy is t h e  i n t e g r a l  of t h e  f u n c t i o n  over t h e  area of t h e  body denoted 
S
by S. The term on t h e  right-hand s i d e  of equat ion ( 2 )  r e p r e s e n t s  t h e  general­
i zed  aerodynamic force a p p l i e d  to t h e  i t h  mode and is de f ined  by 

where t h e  term pV2/2 is t h e  dynamic p res su re  of t h e  f r e e  stream, AP(x,y,t) 
is the t i m e  varying p e r t u r b a t i o n  i n  the  l i f t i n g  p res su re  d i s t r i b u t i o n  a t  t h e  
p o i n t  x,y, and Q i ( t )  is t h e  gene ra l i zed  aerodynamic f o r c e  normalized by t h e  
dynamic pressure.  The l i f t i n g  p res su re  d i s t r i b u t i o n  w i l l  be assumed to be 
r ep resen tab le  by t h e  fo l lowing  equation: 

where AP. ( x , y , t )  is t h e  time h i s t o r y  of t h e  p r e s s u r e  a t  t h e  p o i n t  x,y due 
to  the jti mode being d i s p l a c e d  by t h e  u n i t  impulse f u n c t i o n  a t  t = 0. Subst i ­
t u t i n g  t h i s  expres s ion  f o r  AP(x,y,t) i n t o  equat ion ( 4 )  wi th  t h e  i n i t i a l  pertur­
b a t i o n  i n  the  p r e s s u r e  d i s t r i b u t i o n  equal to  zero and f a c t o r i n g  o u t  t h e  dynamic 
p res su re ,  Q i ( t )  can be expressed as 

n 
P r t  

where Q i j ( t )  is de f ined  by 
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Equation (2)  can be r e w r i t t e n  i n  ma t r ix  form as 

where [MI is a d iagonal  ma t r ix  with t h e  i t h  d iagonal  element being def ined  by 
equat ion  ( 3 ) ,  [D] is a d iagonal  mat r ix  with t h e  i t h  d iagonal  element being 225 iMiu n i  [K] is a d iagonal  ma t r ix  wi th  t h e  i t h  d iagonal  element being Miwni, 

[ Q ( t ) ]  is a mat r ix  wi th  t h e  i t h , j t h  element being de f ined  by equat ion  (7), q ( t )  
is a vector  wi th  t h e  i t h  element being t h e  variable q i ( t ) ,  and 0 is a n u l l  
matrix.  

In t roducing  t h e  Four i e r  t ransform p a i r  as 

and applying t h e  t ransform to equat ion  (8 )  y i e l d s  

where the  fol lowing Four ie r  t ransform properties have been used: 
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Equation (10) represents a variation of the classical flutter equation, and is 
valid only for stable aircraft motion. 

The ith,jth element of the matrix [Q(jw)I represents the Fourier trans­

form of the ith generalized unsteady aerodynamic force, normalized by the 

dynamic pressure, due to a unit impulse of the jth mode. Alternatively, it can 
be interpreted as the contribution to the ith generalized force due to a steady
oscillation in the jth mode at a frequency of w, which can be expressed in the 
time domain as 

where Ai. and @ij are the amplitude and phase angle of the ith,jth element 

of rQ(t)j or [Q(JW)l. 


DESCRIPTION OF TECHNIQUE 


In this section an approximation is developed for the unsteady aerodynamic

forces in the frequency domain and, by inversion, in the time domain. The 

approximation gives an accurate representation of the aerodynamic forces for 

oscillatory motion provided the assumptions of small perturbation, inviscid 

flow are valid. The primary sources of errors in the approximation are the 

availability of only a limited frequency band of aerodynamfc force data due to 

oscillatory motion and the limited order of the matrix Pade approximation 

employed to fit these data. Quantification of the accuracy of the aerodynamic

forces for arbitrary motion requires additional analytical and experimental 

research and is beyond the scope of this paper. 

Theoretical three-dimensional oscillatory aerodynamic forces are normally

calculated at a specified Mach number with the body oscillating at a number of 

reduced frequencies. The reduced frequency k is a nondimensional number that 

represents the number of radians through which the body oscillates per reference 

length c/2 the body travels through the fluid, or 


1 wc
k = - ­ 


2 v  
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where w is the dimensional circular frequency of oscillation and V is the 
velocity of the body through the fluid. Vepa, in reference 7, and Edwards, in 
reference 2, suggest that the unsteady aerodynamic forces may be approximated 
by a rational function of polynomials in the complex frequency domain (i.e., 
a Pad6 approximation in the reduced frequency domain). Pad6 approximations are 
classified by the order of the polynomials of the numerator and denominator. 
In the present paper, the notation [K,N] is used to represent a Pad6 approxi­

mation with a numerator polynomial of order K over a denominator polynomial 

of order N, or 


(jk)iai 


i=O 
T(jk) = 

N 

where T(jk) is the approximation of the function, ai are the coefficients of 
the numerator polynomial, bk are the coefficients of the denominator (the coef­
ficient b~ is set to unity), and k is the independent variable of the approx­
imation. Vepa, in reference 7, and Edwards, in reference 2, have suggested the 
use of an [N+l,N] Pad6 approximation based on the high-frequency asymptotic
behavior of unsteady aerodynamics as predicted by piston theory. Since the 
[N+l,NI approximation is a special case of the rN+2,N] Pad6 approximation and 
since it is desired to approximate the unsteady aerodynamic forces only over a 
specified frequency range (thereby ignoring the high-frequency behavior), an 
[N+2,N1 Pad6 approximation was employed for the development of the technique 
described herein. This is also consistent with the order of the approximation 
used in references 3 to 5 for the "Least-Squares Method." 

The objective is to find a set of stable [N+2,NI Pad6 approximations 

which best fit the matrix [Q(jw)] of equation (10) at a discrete set of fre­

quencies. The parameter N represents the number of terms used to represent 

the lag in the development of the circulation (for the two-dimensional case they 

would approximate the Theodorsen circulation function); henceforth, N is 

referred to as the order of the unsteady aerodynamic Pad6 approximation. Also, 

the term "Pad6 approximation" refers to the unsteady aerodynamic Pad6 approxima­

tion described in the present paper. A necessary and sufficient condition for 

stability of the Pad6 approximation is that the roots of the denominator poly­

nomial of the Pad6 approximation have negative real parts. Furthermore, it is 

appropriate, from the number of differential equations generated by the algo­

rithm and the amount of computational resources required by the algorithm, to 

require that the denominator polynomial be the same for every column of the Pad6 

approximation. This forces the approximations of the unsteady aerodynamic 

forces that are dependent on the motion of a particular node to be a function 
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of the  v a r i a b l e s  t h a t  approximate the  l a g  i n  development of t he  c i r c u l a t i o n  f o r  
t h a t  mode and independent of t h e  motion of t h e  o the r  modes. This  resu l t s  i n  a 
sav ings  i n  the  number of equat ions  used to  approximate t h e  system because one 
set of equat ions  are used to rep resen t  t h e  l a g  i n  t h e  development of t h e  c i rcu­
l a t i o n  per mode r a t h e r  than  per element as i n  t h e  gene ra l  Pad6 approximation. 
The problem is formulated as follows: l e t  t h e  mat r ix  [ 6 ( j w ) ]  be t h e  approxi­
mation i n  the  frequency domain of the  unsteady aerodynamic fo rces ;  l e t  [ P ( j w ) ]  
be a mat r ix  of elements such t h a t  t h e  i t h , j t h  element represents t h e  numerator 
polynomial of t he  Pad; approximation; and l e t  [R(jw)]  be a d iagonal  matri? 
such t h a t  t h e  j t h  d iagonal  element is the  denominator polynomial of t h e  Pade 
approximation which best f i t s  the  j t h  column of the  mat r ix  [ Q ( j w )  ] a t  a d i s ­
crete set of  f requencies .  Then, 

where 

The d e t a i l s  of t he  method of s o l u t i o n  f o r  f i n d i n g  t h e  matrices [RQ] and 
[Pm] of equat ions (16) and (17) are given i n  t h e  appendix. The method is out­
l i n e d  here. The problem is to f i n d  t h e  matrices [Pm] and [Rg] such t h a t  
[Q(jw)] is a good approximation to [Q(jw)]  s u b j e c t  to t h e  c o n s t r a i n t s  t h a t  
t he  roots of the  polynomials def ined  by [R] i n  equat ion  (15) have negat ive  
real parts. This  could be accomplished by minimizing 

while  s a t i s f y i n g  t h e  s t a b i l i t y  c o n s t r a i n t s .  I n  equat ion  (18) ,  J is t h e  cost 
of the approximation, Nk is the  number of reduced f requencies  kQ a t  which 
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aerodynamic force data are a v a i l a b l e ,  QijJjkg) is t h e  i t h , j t h  element of 
[ Q ( j k ) ]  eva lua ted  a t  t h e  frequency kj,, Q i j ( j k j , )  is t h e  Pad6 approximation 
for the  i t h , j t h  element of [ Q ( j k ) I  eva lua ted  a t  t h e  frequency kj,, and 
1 1  1 1  is a metric norm as defined i n  t h e  appendix. By no t ing  t h a t  t h e  i n f l u ­
ence of [PI and [R] on t h e  cost is column dependent,  by v i r tu re  of rR1 
being d iagonal ,  t h e  problem can be reduced i n t o  n smaller problems by mini-
m i  z ing 

t h e  func t ion  a c t u a l l y  minimized i n  t h i s  paper is 

n Nk  
1 r . T  

where R j ( j k j , )  is the  j t h  element of t he  mat r ix  [R] and P i j ( j k j , )  is  the  
i t h , j t h  element o f  [PI eva lua ted  a t  t h e  reduced frequency kg. Minimizing 
equat ion  (20) r a t h e r  than equat ion  (19) r e s u l t s  i n  l a r g e r  errors a t  t h e  lower 
f requencies .  It is shown subsequent ly  to g ive  good r e s u l t s .  A numerical  gra­
d i e n t  procedure is used to f i n d  [ R c j w ) ]  so t h a t  equat ion  (20) is minimized 
while  cons t r a in ing  t h e  roots of t h e  polynomial to have negat ive  real  parts. 
A t  each g rad ien t  c a l c u l a t i o n ,  a l i n e a r  l ea s t - squa res  estimator is used to cal­
c u l a t e  t h e  elements of  [P(j w )  l .  

Equation (15) can be r e w r i t t e n  as 

where [ z ( j w ) ]  is equal  to [ R ( j w ) ]  w i th  t h e  l ead ing  c o e f f i c i e n t  set  to the  
i d e n t i t y  matr ix ,  or 
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Taking equat ion  (1 0) and s u b s t i t u t i n g  [;(jw) 1 of equat ion  (21 1 for [ Q ( j w )  3 
r e s u l t s  i n  

f 

The state-space formula t ion  of t h i s  approximation to t h e  aeroelastic model 
is der ived by denot ing t h e  s ta te  v a r i a b l e s  as follows: 

Using equat ion  (24 ) ,  equa t ion  (23) can be rearranged as 

W), = x ( t ) 2  

1 

m=O 

1 3  




R=O 


Equations (25) r e p r e s e n t  a set of f i r s t - o r d e r  cons t an t - coe f f i c i en t  d i f f e r e n t i a l  
equat ions  which can be p u t  i n t o  t h e  form of  1 

The ma t r ix  [C] f o r  N = 4 is 

111 -0 -0 -0 

0 -0 -0-

0
-

[I1 


0
-
0
-

and t h e  mat r ix  [B] f o r  N = 4 is 

The dimensions of t h e  ma t r ix  A (M,- are a func t ion  of t h e  number of modes 

used to  r ep resen t  t h e  system n and t h e  order of t h e  Pad6 approximation used 
N. For c l a r i t y  i n  t h e  above development, t he  o rde r  of t h e  approximation was 

1 4  



made t h e  same for eve ry  mode shape i n  t h e  system. This  allowed t h e  equat ions  
of motion to be de r ived  with vector  n o t a t i o n  i n s t e a d  of using t h e  i n d i v i d u a l  
scalar equat ion for each mode. I n  practice, the  o rde r  of the approximation f o r  
each mode is a d j u s t e d  u n t i l  t h e  error between t h e  approximation and t h e  aero­
dynamic d a t a  is below a p r e s e t  value. The number of f i r s t - o r d e r  d i f f e r e n t i a l  
equa t ions  is equa l  to 

n 
2n + C N i  

i = l  

where N i  is t h e  order of t h e  Pad6 approximation used to approximate t h e  
unsteady aerodynamic f o r c e s  for the  i t h  mode. 

The eigenvalues  of A (M,- 'r) i nc lude  roots r e s u l t i n g  from the  unsteady­

aerodynamic-forces approximation as w e l l  as the roots of t he  classical  f l u t t e r  
equat ion.  The value of t h e  dynamic pressure pV2/2 t h a t  resul ts  i n  an oscil­
l a t o r y  eigenvalue wi th  t h e  real part of the  eigenvalue equal to  zero is t h e  
f l u t t e r  p o i n t  f o r  t h e  v e h i c l e  a t  t h e  p a r t i c u l a r  Mach number f o r  which t h e  
unsteady aerodynamic d a t a  were c a l c u l a t e d .  Determining t h e  f l u t t e r  p o i n t  for 
a range of Mach numbers determines t h e  f l u t t e r  boundary of t h e  veh ic l e .  

RESULTS AND DISCUSSION 

The method developed i n  t h i s  paper is compared wi th  t h e  "Least-Squares 
Method" of r e fe rences  3 ,  4, and 5 by a p p l i c a t i o n  to t h e  example of r e fe rence  5 
which is an aeroelastic semispan wind-tunnel model w i th  an assumed p lane  of 
symmetry a t  the root. The wing geometry is given i n  f i g u r e  1 ,  and t h e  general­
i zed  masses and f r equenc ie s  are p resen ted  i n  t a b l e  I f o r  t h e  f i r s t  1 0  e l a s t i c  
modes. For the  mode1 used i n  t h i s  example, modes 1 ,  2, 4, 5, and 6 were used 
to r e p r e s e n t  t h e  wing. S t r u c t u r a l  damping was assumed to  be n e g l i g i b l e .  The 
o s c i l l a t o r y  aerodynamic f o r c e s  were c a l c u l a t e d  using a d o u b l e t - l a t t i c e  technique 
similar to t h a t  desc r ibed  i n  r e fe rence  8 .  I n  o rde r  to c a l c u l a t e  t h e  pressure 
d i s t r i b u t i o n  on an o s c i l l a t i n g  wing undergoing simple harmonic motion, t he  l i f t ­
i n g  s u r f a c e  is subdivided i n t o  an a r r a y  of t r a p e z o i d a l  boxes arranged i n  str ips 
parallel to the  airstream as shown i n  f i g u r e  2. The l i f t i n g  s u r f a c e  is then 
represented by a la t t ice  of doub le t s  l o c a t e d  a t  t h e  quarter chord of each box. 
The downwash cond i t ion  is s a t i s f i e d  a t  t h e  three-quarter  chord of each box by 
equa t ing  it to t h e  downwash r e s u l t i n g  from t h e  slope and d e f l e c t i o n  rate of each 
s t ructural  mode. The l i f t i n g  s u r f a c e  was d iv ided  i n t o  210 boxes arranged i n  
30 strips spanwise wi th  seven boxes chordwise. O s c i l l a t o r y  aerodynamic forces 
were c a l c u l a t e d  a t  s i x  reduced f r equenc ie s  (k = 0,  0.1, 0.3, 0.5, 0.7, and 0.9). 

The unsteady aerodynamic forces were approximated through t h e  use of t h e  
method descr ibed i n  t h i s  p r e s e n t  paper to calculate t h e  ma t r ix  c o e f f i c i e n t s  of 
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equation (21 ) and equation (22) . First- and second-order Pad6 approximations 
were used for all-five modes. The approximations (calculated in square meters)
for 611 I 621 I Q12# and 622 unsteady aerodynamic forces for N = 2 are 

611 = (3.39 x ( j w ) 2  + (1.18 x loW4)( j w )  + (1.62 x 10-2) 'I 
2(2.03 x 103)( jw)  (1.59 x 1 0  ) ( j w )-

j w  + 5.52 x lo1 j w  + 7.15 x l o 2  

(5.25 x ( j w )  (6.85 x ( j w )  
~~~~ 

I ­

j w  + 5.52 x l o 1  j w  + 7.15 x 102 

612 = (1 .15 x 10-7) ( j w ) 2  - (1 .51 x 10-4) ( j w )  - (1.69 x 10-1) 

(3.42 x ( j w )  (1.40 x lom2)( j w )  

j w  + 5.80 x l o1  $0 + 4.26 x l o 2  

+ 	 (6.18 x ( j w )  ~ (8.64 x ( j w )+ 
j w  + 5.80 x l o 1  j w  + 4.26 x l o 2  

The least-squares approximation for the same unsteady aerodynamic forces with 
the same a priori parameters as in reference 5 are 

A 


Q11 = (3.81 x ( j w ) 2  + (1.12 x 10-4)(jW) + (1.63 x 10-2) 


(5.37 x low3) ( j w )  + (8.49 x ( j w )-
j w  + 8.50 x IO1 j w  + 1.70 x l o 2  

( 1  .23 x ( j w )  (1.08 x ( j t o )  

j w  + 2.55 x I O 2  ju + 3.40 x l o 2  
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(1 .56 x ( j w )  + (5.80 x ( j w )-
j w  + 8.50 x l o 1  j w  + 1.70 x l o 2  

A 

412 = - (7.01 x ( j w ) 2  - (4.58 x (jw) - (1.68 x 10-l)  

+ (7.45 x 10'2)(jw) (2.61 x 10-l)  (jw)-
j w  + 8.50 x l o1  j w  + 1.70 x l o 2  

(6.41 x 10-l)  ( j w )  (5.17 x 10-l) ( j w )+ - ­
j w  + 2.55 x 102 j w  + 3.40 x 102 

A 

422 = - (1.50 x 10-7) ( j w ) 2  + (4.32 x (jw) - (2.46 x 10-l)  

(6.88 x 10-l)  ( j w )+ - - (3.69 x 10-l)  ( j w )  

j w  + 2.55 x l o 2  j w  + 3.40 x l o 2  

The f i t ,  to  t h e  d o u b l e t - l a t t i c e  data, achieved by t h e  approximations descr ibed 
by equat ion (30) and equa t ions  (31) is presented i n  f i g u r e  3. For t h i s  case, 
f i g u r e  3 i n d i c a t e s  t h a t  both t h e  "Least-Squares Method" w i t h  fou r  terms and t h e  
Pad6 approximation method p resen ted  i n  the  p re sen t  paper wi th  t w o  terms are 
accurate approximations for t h e  Ql l ,  421, and 422 aerodynamic f o r c e s .  The 
Pad6 approximation f o r  t he  412 aerodynamic f o r c e  does no t  do as w e l l  as the  
"Least-Squares Method." B u t ,  an important p o i n t  to be noted is t h a t  t h e  Pad6 
method r e q u i r e s  33 pe rcen t  fewer state equat ions than employed wi th  t h e  "Eeast-
Squares Method." I n  a d d i t i o n ,  t h e  a priori parameters r e q u i r e d  by t h e  "Least-
Squares Method" are n o t  needed by the  Pad6 approximation method. The frequen­
cies and damping ra t ios  p r e d i c t e d  by t h e  t w o  methods are described i n  f i g u r e  4. 
F igu re  4 also p r e s e n t s  r e s u l t s  of a f i r s t - o r d e r  Pad6 approximation when used 
i n  t h e  s t a b i l i t y  a n a l y s i s .  The f i g u r e  i n d i c a t e s  t h a t  t h e  p r e d i c t e d  damping 
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ra t io  for the f i r s t  mode is not as,accurate for the first-order Pad6 approxi­
mation as for the second-order Pade approximation. Since the change i n  the 
frequency and the damping ratio w i t h  respect to a change i n  the dynamic pressure 
is predicted correctly near the flutter dynamic pressure, it may be possible to 
use a first-order Pad6 approximation i n  the design stage while adjusting the 
design parameters accordly to account for the error. If t h i s  could be done, 
a 50-percent reduction i n  the number of state equations needed to represent the 
system could be realized. A s  shown i n  figure 4, the second-order Pad6 approxi­
mation estimates the dynamic pressure a t  which the system becomes unstable to 
about the same accuracy as does the "Least-Squares Method." 

CONCLUDING REMARKS 

An analytical method for approximating time-domain aerodynamic forces has 
been presented. The method is based on approximating the oscillatory aero­
dynamic forces w i t h  Pad6 approximations i n  the reduced frequency domain. An 
approximate time-domain representation is then developed, assuming stable air­
craft  motion, through the use of the inverse Fourier transform. The analytical 
method is applied to an aeroelastic wind-tunnel model and showed good agreement 
w i t h  previously used analytical methods for predicting the flutter point and 
s tabi l i ty  trends. Some of the important results of t h i s  work are as follows: 

1 .  A l l  the parameters of the aerodynamic model are calculated without a 
priori knowledge, unlike the currently formulated "Least-Squares Method." 

2. The resulting approximations are stable i n  the sense that a bounded 
input w i l l  produce a bounded generalized aerodynamic force output. 

3. The number of differential equations required to represent the aerc­
dynamic force to a given accuracy tends to be smaller than employed i n  certain 
existing techniques where the denominator coefficients are chosen a priori. 
The observed reduction i n  the set  of system equations was 33 percent from 
that employed i n  the "Least-Squares Method." 

Langley Research Center 
National Aeronautics and Space Administration 
Hampton, VA 23665 
September 5, 1980 
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APPENDIX 

APPROXIMATION OF UNSTEADY MRODYNAMIC FORCES 

The gene ra l i zed  aerodynamic f o r c e s  can be thought of as a ma-rix of elements 
such t h a t  t h e  i t h , j t h  elements r e p r e s e n t  t h e  gene ra l i zed  force t h a t  is a p p l i e d  
to the  i t h  s t r u c t u r a l  mode due to a pressure d i s t r i b u t i o n  caused by t h e  j t h  mode 

J o s c i l l a t i n g  a t  a reduced frequency. I n  practice, t h e  gene ra l i zed  aerodynamic 
f o r c e  ma t r ix  is c a l c u l a t e d  for a number of specific Mach numbers and reduced 
f r equenc ie s .  Th i s  appendix d e s c r i b e s  a technique which c a l c u l a t e s  an approxi­

\ mation to the unsteady aerodynamic forces as a r a t i o n a l  polynomial i n  reduced 
frequency. D e t a i l s  are on ly  provided f o r  t h e  f i r s t - o r d e r  Pad6 approximation 
(N = 1 ) .  

Consider equa t ions  (1 5), ( 1  6), and (1 71, wi th  k being s u b s t i t u t e d  for 
W/2V and N = 1 .  Then 

and 

The matrices ~ R o ] ,  [PO],  [ P l ] ,  [Pz] ,  and IP31 m u s t  be found such t h a t  t he  
fol lowing equa t ion  is made as small  as p o s s i b l e  and t h e  roots of t h e  polynomials 
of equat ion (A2) have nega t ive  real  parts 

The func t ion  I I I I is t h e  norm of the  argument and is de f ined  as 
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APPENDIX 

l l x l l  = t i -

where t h e  func t ion  ( , ) is t h e  scalar product  which has t h e  fol lowing metric 
properties: 

(x,x) 2 0 ( e q u a l i t y  ho lds  if and on ly  i f  x = 0) 

(y,x) = Conjugate (x,y) 

(x,cy) = c ( x , y )  (c = Constant)  

The minimization of equa t ion  (A4) can be separated i n t o  n smaller prob­
l e m s  by no t ing  t h a t  t h e  in f luence  of [PI and [R] on t h e  cost is column 
dependent s i n c e  [R] is diagonal .  Therefore ,  t h e  problem is to  f i n d  t h e  j t h  
co lumn vectors [P -1 ,  Cpl ,. I ,  [p2,j1 , and rP3, j ]  of the  matrices [PO], 
[PI 1 ,  [P21, and and t i e  j t h  element ro, j of t h e  diagonal  ma t r ix  
[Ro1 

The e f f e c t  of minimizing equation,(A6) i n s t e a d  of equa t ion  (A4)  is to cause t h e  
maximum relative error of the Pade approximation to be a t  t h e  lower frequencies .  
For a given ro,j ,  equa t ion  (A6) can be r e w r i t t e n  as 

where 
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APPENDIX 

B j  = 

r 


0 


x j  = 

where Pm, i j  is t h e  i t h ,  j t h  element of [P,]. I f  t h e  c o n s t r a i n t  t h a t  is 

imposed so t h a t  t h e  requirement of t h e  rank of t h e  mat r ix  A i n  equat ion  (A9) 
does not have to equa l  t h e  dimension of X j ,  t he  unique s o l u t i o n  to equat ion  (A71 
exis t s  as (ref. 9) 
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Xj = Ai- Bj 

where Ai- is t h e  pseudoinverse of A i n  equat ion (A9). 

The minimization of equat ion (A6) is performed by a numerical ly  cons t r a ined  
g r a d i e n t  procedure desc r ibed  i n  r e fe rence  1 0  f o r  t h e  v a r i a b l e s  of equat ion (A2) .  
The c o n s t r a i n t  t h a t  must be enforced is t h a t  t h e  r e s u l t i n g  approximation func­
t i o n  be stable. I t  is necessary and s u f f i c i e n t  for t h e  f u n c t i o n  to be s table  
i f  the roots of t he  f u n c t i o n s  described by equa t ion  (A2) have nega t ive  real  
parts. For t h e  example p re sen ted  i n  t h e  appendix t h i s  r e q u i r e s  t h a t  

A t  each step i n  t h e  parameter s ea rch  f o r  t h e  m i n i m u m  fo  equat ion (A7) ,  equa­
t i o n  (A12) is used to s o l v e  for t h e  v a r i a b l e s  i n  equat ion (AlO).  The procedure 
for higher order approximations is similar. 
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1 
2 
3 
4 
5 
6 
7 

TABLE 1.- PREQUENCY AND GENERALIZED MASS 

Mode Natural frequency, Generalized mass, 

Hz 


~­

5.233 
19.1 29 
20.906 
25.769 
46.110 
61.234 
79.682 

a 86.030 
9 98.087 

10 1 1a. 150 -

- kg ­

3.678 
7.769 q" 

7.044 
2.970 
4.71 4 
4.758 
5.1 56 

11.297 
7.558 
5.501 __. 
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Figure 2.- Paneling scheme for doublet-lattice aerodynamics. 
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